
First-In Risk Evaluation System
(F.I.R.E. System)

UAV Control and Autonomous Flight

Final Report

Author:
Erik C.M. Johnson

Supervisor:
Alan Steele, Ph.D.

Sunday 9th April, 2017

A fourth-year capstone project with:
Fizza Ahmad Sheikh (100892415)

Alok Deshpande (100890102)
Calla McClelland (100884066)

Mohamed Jaber (100878656)
Ann Gunaratnam (100885604)

Abstract

Recent advances in robotic systems have opened the door for the pursuit of
novel applications. This report presents the development of an autopilot system
as part of a fourth-year capstone project at Carleton University. The objective
of the project was the realization of a quadcopter UAV system for application
to fire response operations.

The autopilot system designed allows for high-level flight control so that no
operator is occupied. This high-level flight control can be overridden through a
manual control safety subsystem. The autopilot system exposes access to GPS,
accelerometer, and magnetometer data for transmission to the base station.

The autopilot system still requires some software to be written and tested
for high-level flight control to be ready for final integration. A flight test also
remains for the completed quadcopter UAV system. Future work with pho-
togrammetric processing of received images at the base station would benefit
this project in terms of data visualization.

i

Contents

1 Introduction 1
1.1 Full System Overview . 2

2 Project and Personal Objectives 3

3 Autopilot System Development 3
3.1 Autopilot Selection . 4

3.1.1 PXFmini . 4
3.1.2 Pixhawk . 5
3.1.3 APM2.6 . 6
3.1.4 MCDA Methods . 6
3.1.5 Application of the Pugh Method 8

3.2 Software . 8
3.2.1 Real Time Operating System 9
3.2.2 ArduPilot . 9
3.2.3 ROS . 10
3.2.4 MAVLink and MAVROS 10
3.2.5 Architecture . 12

3.3 Data Access . 13
3.3.1 Implementation . 13
3.3.2 Testing . 15

3.4 High-Level Control . 18
3.4.1 Implementation . 18
3.4.2 Waypoint File Format . 19
3.4.3 Manual Control Safety Subsystem 21
3.4.4 Remaining Work on High-Level Control 21

4 Future Work 22
4.1 Photogrammetry . 22

5 Conclusion 23

A Data Access Library for the F.I.R.E. System (fire data.py) 25

B Example Using the Data Access Library 27

C Graphic Showing the QGC WPL 120 Format 28

ii

List of Figures

1 Concept sketch showing system in operation at the scene of a fire
(sketch by Maddy DeRueda) . 1

2 The project system diagram with the area of this report identified
in blue . 2

3 Image of PXFmini board with external connections identified [1] 5
4 Image of the Pixhawk autopilot [2] 5
5 A disassembly showing the APM2.6 [3] 6
6 Kepner-Tregoe methodology applied to purchasing a new vehicle

[7] . 7
7 AHP applied to selecting a green vehicle [5] 8
8 Pugh method applied to selecting a UAV autopilot 9
9 The PR2 robot developed by Willow Garage [22] 11
10 Diagram showing the interaction between software components . 12
11 Flowchart for initialization of the data access subsystem 13
12 Flowchart for servicing callbacks received for messages published

to topics . 15
13 Plot showing accelerometer data for three clearly distinguishable

orientations . 16
14 Plot showing magnetometer data for three clearly distinguishable

orientations . 17
15 Overlay of walk GPS data (white line) on satellite image of Car-

leton University outside Mackenzie Building and Canal Building 17
16 System for implementing the manual control override 21
17 Digital 3D model of a Mayan ruin in Copan, Honduras created

with the use of UAVs [47] . 23

iii

List of Tables

1 Individuals responsible for each section of the project 3
2 Available high-level commands using the MAVROS node [28]

(shell commands omit the necessary rosrun mavros) 18
3 Format of an entry in the QGC WPL 120 format file used for

waypoint specification [37], [38], [39] 19
4 Valid frames of reference in waypoint files loaded with MAVROS

in the order listed in the source code [36], [38] 20
5 Valid commands in waypoint files loaded with MAVROS in the

order listed in the source code [36], [39] 20

iv

List of Abbreviations

Analytic Hierarchy Process AHP
ArduPilotMega APM
Carleton Undergraduate Engineering Students’ Equipment Fund CUESEF
Controller Area Network CAN
Digital Elevation Model DEM
Electronic Speed Controller ESC
General Public License GPL
Global Positioning System GPS
GNU’s Not Unix GNU
Industrial, Scientific, and Medical ISM
Inertial Measurement Unit IMU
Inter-Integrated Circuit I2C
Lesser General Public License LGPL
Micro-Aerial Vehicle MAV
Multiple Criteria Decision Analysis MCDA
Open Systems Interconnection OSI
Operating System OS
Portable Operating System Interchange POSIX
Printed Circuit Board PCB
Pull Request PR
Pulse Position Modulation PPM
Pulse Width Modulation PWM
Radio Frequency RF
Real Time Operating System RTOS
Robot Operating System ROS
Serial Peripheral Interface SPI
Single Board Computer SBC
Universal Asynchronous Receiver-Transmitter UART
Unmanned (or Uninhabited) Aerial Vehicle UAV

v

1 Introduction

A convergence of technologies has led to the realization of novel robotic systems.
This project seeks to address the deficiency of information available to firefight-
ers at the scene of a fire. We have proposed a quadcopter unmanned aerial
vehicle (UAV) system that uses a combination of visual and thermal imagery
along with data from other sensors to provide firefighters with a new perspective
on the scene of a fire. Concept sketches illustrating this idea are shown in figure
1.

Figure 1: Concept sketch showing system in operation at the scene of a fire
(sketch by Maddy DeRueda)

1

This fourth-year capstone project has made meaningful progress towards
the application of a quadcopter UAV to fire response. The objective for the
system is to provide firefighters with actionable information that they might
not be able to gain without employing UAVs. This project is administered by
the Department of Electronics at Carleton University in Ottawa, Canada. This
project was supervised by Prof. Alan Steele and completed in conjunction with
Alok Deshpande, Fizza Ahmad Sheikh, Ann Gunaratnam, Mohamed Jaber, and
Calla McClelland.

This report will present an overview of the system, the objectives of the
project as proposed and then present the autopilot system designed to meet
these objectives. The autopilot system development involved selecting a suit-
able autopilot, designing a software architecture, and testing that it would be
able to meet all the required objectives. Potential future work towards the im-
provement of the system is also given.

1.1 Full System Overview

The system diagram with the area of this report identified in blue is shown
in figure 2. The system is divided into two separate parts: the UAV and the
base station (a PC running the Ubuntu OS). For further information on other
components identified in this system diagram refer to table 1 for the individual
responsible for that component.

Figure 2: The project system diagram with the area of this report identified in
blue

2

Section Individual
Obstacle Detection Alok Deshpande

Power Mohamed Jaber
Thermal Ann Gunaratnam
Autopilot Erik Johnson

Communication Fizza Ahmad Sheikh
GUI Calla McClelland

Vision Calla & Ann

Table 1: Individuals responsible for each section of the project

2 Project and Personal Objectives

The high-level objective of this project was to demonstrate a proof of concept of
a flight-capable UAV system for application to firefighter response. The specific
objectives in achieving this goal were to be able to:

• control the UAV’s flight path from a GUI,

• collect sensor data for display to firefighters and/or for avoiding obstacles
in the flight path, and

• present relevant information to firefighters with a GUI.

The objectives of the UAV control and autonomous flight portion of this
project were to develop a system capable of high-level control of the flight of
a UAV and acquiring data for transmission to a base station. The high-level
control of the flight requires sensors such as accelerometer, gyroscope, magne-
tometer, and GPS. This data, especially the GPS, is valuable for visualization
on the base station. Therefore, access to this data is considered as part of the
UAV control and autonomous flight system.

The objectives of the UAV control and autonomous flight portion of the
project can be summarized as:

• allowing for emergency landing or manual flight control,

• accepting high-level commands (such as takeoff, waypoint navigation and
landing), and

• accessing sensor data (namely GPS, magnetometer and accelerometer).

3 Autopilot System Development

A suitable system architecture had to be selected, designed, and implemented
so that the system would be capable of meeting the objectives as specified in
section 2. This required the selection of autopilot hardware capable of meeting

3

these objectives. The selected autopilot hardware then required the design of a
software architecture. With this hardware and software system, access to data
was demonstrated and a high-level control method was implemented.

3.1 Autopilot Selection

Selection of the autopilot hardware to use as a flight controller was approached
rigorously as it dictated many aspects or limitations for the entire system. The
requirements of the autopilot hardware were that it must be capable of:

• controlling at least four (4) Electronic Speed Controllers (ESCs),

• interfacing with, or contain in the autopilot hardware, a GPS sensor,

• being controlled with a standard RF controller,

• running an autopilot software, such as ArduPilot, and

• interfacing with, or support operation of, the systems to be designed by
other group members.

These requirements are hard requirements and dictated what could be con-
sidered for the autopilot hardware. In addition to these hard requirements, it
would be beneficial for addressing the limited weight payload if the autopilot
could support operation of at least a subset of other functions to be developed
by other group members. The autopilots considered were:

• a PXFmini mounted on a Raspberry Pi 0,

• a PXFmini mounted on a Raspberry Pi 3,

• a Pixhawk,

• and an APM2.6.

3.1.1 PXFmini

The PXFmini is a sensor PCB assembly compatible with the Raspberry Pi
SBC. It mounts on the 40 pin header of a Raspberry Pi and is compatible
with all Raspberry Pi models with the 40 pin header layout (i.e. not either
model of the Raspberry Pi 1) [1]. We considered using the PXFmini with the
Raspberry Pi 0 and the Raspberry Pi 3, both of which are capable of running
the ArduPilot software in a Linux environment configured to be an RTOS. The
PXFmini contains most of the sensors required for controlling a UAV; however,
it does not include an onboard GPS module [1]. It is necessary to connect a
GPS module via a UART interface. An image showing the PXFmini along with
external connections is shown in figure 3.

4

http://erlerobotics.com/blog/product/pxfmini/

Figure 3: Image of PXFmini board with external connections identified [1]

3.1.2 Pixhawk

The Pixhawk is an open-source, self-contained (not relying on any external
computation for flight control) autopilot. The Pixhawk runs a POSIX-compliant
RTOS that can use either PX4 or ArduPilot for flight control [2]. The Pixhawk
would require an external GPS, but it also exposes many other interfaces such
as I2C, SPI and CANbus [2]. One interesting feature of the Pixhawk is the
inclusion of a redundant accelerometer/gyroscope and a failsafe co-processor
[2]. An image of the Pixhawk is shown in figure 4.

Figure 4: Image of the Pixhawk autopilot [2]

5

https://pixhawk.org/

3.1.3 APM2.6

The APM2.6 is an open-source, self-contained (not relying on any external com-
putation for flight control) autopilot built for use with ArduPilot. The APM2.6
is past end-of-life and no longer supports current builds of ArduPilot (versions
> 3.3) [3]. Versions earlier than 3.3 could be used in a simple flight control
application; however, significant changes and fixes have been made since ver-
sion 3.3 [4]. The APM2.6 contains all sensors required for flight, except for the
GPS. The APM2.6 would allow for easy editing and reflashing of its code as
it runs open-source ArduPilot (version < 3.3) on bare metal (i.e. no OS). A
disassembly of the APM2.6 is shown in figure 5.

Figure 5: A disassembly showing the APM2.6 [3]

3.1.4 MCDA Methods

Three Multiple Criteria Decision Analysis (MCDA) methods were compared in
order to determine the best MCDA method to use for selecting an appropriate
autopilot. The three methods considered were: the Pugh method, the Kepner-
Tregoe methodology, and the Analytic Hierarchy Process (AHP). These three

6

http://ardupilot.org/copter/docs/common-apm25-and-26-overview.html

MCDA methods were compared in a NASA trade study of decision methodolo-
gies and can therefore be considered as mature and accepted MCDA methods [5].

The first MCDA method considered was the Pugh method. This method is
a relatively straight forward pro/con method that presents results in an easy
to convey table. The Pugh method can consider qualitative factors without
assigning them a quantitative value [6]. This method is lacking in accuracy of
final decisions [5] and issues have been raised surrounding its ability to converge
in iterative applications [6].

The next MCDA method considered was the Kepner-Tregoe methodology.
The Kepner-Tregoe methodology is relatively well-known among MCDA meth-
ods because of its application during the Apollo 13 disaster [7]. There are two
major differences in the Kepner-Tregoe methodology as compared to the Pugh
method: a MUSTS/WANTS division of criteria and quantitative consideration
for selecting the best option [5]. The MUSTS/WANTS division is not fully ap-
plicable to the UAV autopilot selection as the information on decision criteria
is relatively static. The MUSTS/WANTS division of criteria supports itera-
tive decision making where the dynamic nature of information may change the
viability of an option [7]. The other difference in the Kepner-Tregoe method-
ology is in its quantitative consideration for selecting the best decision. Each
WANTS criteria is assigned a quantitative weight and then the information on
the criteria about each possible decision is assigned a quantitative value [7]. The
optimality of each decision is determined by the sum of the products between
the values and weights. The highest is selected as the best option. An example
of the Kepner-Tregoe methodology is shown in figure 6.

Figure 6: Kepner-Tregoe methodology applied to purchasing a new vehicle [7]

7

The final MCDA method considered was AHP. AHP is a highly complicated
but accurate MCDA method that models the decision to be made as a hierarchy
[8]. AHP involves a complicated algorithm for computing the final score of
each option (details available in [8]). AHP is considered to be very effective at
making complicated decisions with conflicting criteria when the problem can be
decomposed into a hierarchy [8], [9]. Some criticisms against AHP are given in
[9] and include that the method gives little guidance in the transformation of
problems into a hierarchy suitable for application of the method. An example
application of AHP is shown in figure 7.

Figure 7: AHP applied to selecting a green vehicle [5]

3.1.5 Application of the Pugh Method

The selected MCDA method was the Pugh method. This method was selected
due to its simple and intuitive matrix communication. When applied to the task
of selecting a UAV autopilot, it gave the results shown in figure 8. The final
autopilot selected was the PXFmini and Raspberry Pi 3 even though the result
of the Pugh method was PXFmini and Raspberry Pi 0. The biggest factor in
this decision was that the ease of developing on the Raspberry Pi 3. The decision
to develop with the Raspberry Pi 3 as our platform still allows migration back
to the Raspberry Pi 0 if profiling later indicates that the Raspberry Pi 0’s lower
computation could support the developed software.

3.2 Software

The software developed needed to be capable of meeting the objectives speci-
fied in section 2. The selected autopilot hardware is capable of meeting all these
objectives; however, it is the software architecture that implements the ability
to meet these objectives.

8

Figure 8: Pugh method applied to selecting a UAV autopilot

The software architecture was largely determined by the selection of the au-
topilot hardware. The PXFmini selected is dependent on a Raspberry Pi for
its computation; therefore, dictating the use of a Linux OS. ErleRobotics, the
manufacturer of the PXFmini, provides an OS image. That OS image is Debian-
based with a real time patched kernel and including the APM flight stack [10].

3.2.1 Real Time Operating System

A real time system is one that must respond to asynchronous inputs in a spec-
ified time [11]. An RTOS is an OS that can perform processes and respond
to inputs within a guaranteed time [12]. Three different levels of RTOS are
possible: hard, soft, and firm. A hard RTOS must respond within a given time
or it is considered a failure [11]. A soft RTOS must respond on average within
a given time [11]. A firm RTOS contains both a limit on average response and
on absolute response [11].

The OS image provided by ErleRobotics is a Debian-based Linux distribution
compiled with RT PREEMPT [10]. Compiling the kernel with RT PREEMPT
allows for the majority of the kernel’s operation to be preemptively interrupted
to service the high priority real time tasks and includes high resolution timers
in the OS for highly deterministic task scheduling [13]. The RTOS created by
compiling with RT PREEMPT is a hard RTOS [13].

3.2.2 ArduPilot

ArduPilot is an open-source autopilot software developed and distributed in
C++. ArduPilot is over 5 years old and has been used in over 1 million vehicles
[14]. ArduPilot is operated on hardware systems by running it from its compiled
executable. ArduPilot is distributed with the GNU GPLv3 license [14]. The
most important feature of the GNU GPLv3 license in comparison with other

9

http://erlerobotics.com/blog/
http://erlerobotics.com/blog/
http://ardupilot.org/

popular open-source licenses (e.g. Apache, MIT, or BSD) is that it is copyleft
[15]. Copyleft means that any modifications made to the source code and dis-
tributed, either as source code or as a compiled version, must be released under
the same license [16]. This does not restrict commercial use of the software and
a company can still sell copies of software under the GNU GPLv3 license [16].

ArduPilot has been used in recent research. Coombes et al. demonstrated
an autopilot system based on ArduPilot for rapid prototyping of high-level con-
trol algorithms [17]. Their work demonstrated the use of ArduPilot for handling
low-level control while being able to control the UAV at a high-level through
Simulink [17]. Also in a recent publication, Ryan et al. used ArduPilot to design
a UAV system for studying calving dynamics at Store Glacier [18]. This system
flew in a high risk environment and was able to recover enough images to apply
photogrammetric methods (discussed in section 4.1) to create a digital elevation
model (DEM) of the glacier for studying calving dynamics [18].

3.2.3 ROS

The Robot Operating System (ROS) is a communication framework for multi-
lingual software components across potentially heterogeneous hardware [19].
Over 3000 ROS packages are available and the ROS wiki contains over 22 000
pages with a Q&A website containing over 13 000 questions (with over 70%
answered) [20]. The core of ROS is licensed under the 3 clause BSD license
[20]. This is not a copyleft license and specifies no restrictions on the licensing
of modified versions of the software [21]. The most important feature of the 3
clause BSD license is the liability protection it provides to the copyright holder
and contributors [21].

A system using ROS divides processing across nodes that communicate with
each other using messages published to topics or by subscribing to relevant
topics [19]. Tools included in ROS also allow for visualization of all nodes and
topics in the ROS system [19]. ROS is widely used both in research and in
industry. One of the most famous robots running ROS is Willow Garage’s PR2
[22]. This expensive robot uses a stereo vision system with two manipulators and
a mobile base developed for research purposes [23]. The PR2 robot is shown
in figure 9. Another example of the wide-spread use of ROS is at Clearpath
Robotics, a leader in the robotics industry [24], where it is used in industrial
applications. Clearpath Robotics also supports the development of ROS and
provides information on using the ROS ecosystem for research and products
[25].

3.2.4 MAVLink and MAVROS

MAVLink is a communication protocol designed for the specific use case of

10

http://www.ros.org/
http://www.willowgarage.com/
https://www.clearpathrobotics.com/
https://www.clearpathrobotics.com/
http://qgroundcontrol.org/mavlink/start

Figure 9: The PR2 robot developed by Willow Garage [22]

Micro-Aerial Vehicles (MAVs) [26]. The design of MAVLink is inspired in part
by CAN bus [26] and has a simple packet structure at OSI level 2 [27]. A de-
tailed description of the packet structure is given in [27]. MAVLink is designed
specifically for the use of a MAV communicating back to the ground control sta-
tion [26]. In this architecture it will be used internally in the autopilot system
for communicating from Python to the ArduPilot process using MAVROS.

In order to communicate with ArduPilot over MAVLink, MAVROS is used.
MAVROS is a ROS package that creates a ROS node creatively named mavros node.
The existence of the MAVROS node in the system allows for multiple benefits
in interacting with the ArduPilot process. The first benefit it provides is pub-
lishing all MAVLink data received from ArduPilot to ROS topics. A list of the
topics available is given at [28] and it includes GPS, IMU, and magnetometer
data. Another benefit given by the MAVROS node is the ability to use shell
commands for interacting with the ArduPilot process [28]. The most important
of these are mavcmd, mavsafety, and mavwp. Using ROS topic publications for

11

http://wiki.ros.org/mavros

data access and ROS shell commands for high-level control will be discussed in
sections 3.3 and 3.4 respectively.

The generator for MAVLink messages is released under the GNU LGPL li-
cense and any generated output is licensed under the MIT license [26]. The key
difference between the LGPL license and the GPL license is in use of licensed
libraries. The LGPL license provides specific instructions for combined works
and use of LGPL licensed libraries [29]. The MIT license provides no limitations
on use of the original software or licensing of derivative works [30]. The MIT
license does provide similar liability protection to that given under the BSD li-
cense previously discussed [30]. MAVROS contains components licensed under
GPL, LGPL and BSD licenses, all of which have been previously discussed.

3.2.5 Architecture

The software architecture created with the components discussed above is shown
in figure 10. This architecture allows the autopilot system to meet the objectives
specified in section 2. The software developed to meet the objectives is written
exclusively in Python and run as a background process in user space. The
software developed will be discussed in sections 3.3 and 3.4.

Figure 10: Diagram showing the interaction between software components

The important interactions are highlighted with gold arrows showing the
direction of data flow. The Python programs interact with the MAVROS node
through use of the rospy library and shelling MAVROS commands. The rospy

library allows Python programs to create nodes and publish to topics, as well
as receive callbacks when other nodes publish to subscribed topics [31]. This
method is used to access the required data from ArduPilot through MAVROS
and will be discussed in detail in section 3.3. Another way that the Python
programs interact with the MAVROS node is through the execution of shell
commands. This is used exclusively for high-level control and as such will be
discussed in section 3.4.

12

3.3 Data Access

One of the objectives from section 2 for the autopilot system is to be able
to acquire sensor data. The critical data required is GPS, but accelerometer
and magnetometer were also deemed to be important data for collection. This
section will present the ability to access the relevant data from the ArduPi-
lot process through the use of MAVROS. The developed data access library is
shown in appendix A and an example of using this library is given in appendix B.

3.3.1 Implementation

As discussed earlier, data access requires use of the rospy Python library. This
library allows for the creation of a ROS node and for that node to subscribe
to a topic. When a subscribed topic receives data, a callback is issued to a
function supplied during initialization. The Python function implements the
saving of data and alerting the program using the library that data has been
updated. This process can be decomposed into two parts: the initialization and
the callback function.

A flowchart of the initialization for the data access subsystem is shown in
figure 11. The initialization does two tasks on system startup: it creates a node
in the ROS system and then subscribes that node to the desired topic(s) passing
callback functions. Using the rospy library, creation of a node is completed with:

rospy . i n i t n o d e (’ node name ’ , anonymous=True)

Figure 11: Flowchart for initialization of the data access subsystem

13

This creates a new node in the ROS system named node name, unless a node
with the same name already exists. In this case setting anonymous=True allows
the library to append a unique identifier to the end of the name. Subscribing
this node to a topic is achieved with:

rospy . Subsc r ibe r (
’ mavros/ g l o b a l p o s i t i o n / g l o b a l ’ ,
NavSatFix ,
c a l l b a c k f n c

)

This example line subscribes the node to the topic mavros/global position/global

which gives data of type NavSatFix. Every time there is a publication to
the mavros/global position/global topic the function callback fnc will be
called with the data as the first argument. One node can be subscribed to mul-
tiple topics.

A flowchart for the actions taken when receiving a callback is shown in 12.
A prototype for a callback function is:

def c a l l b a c k f n c (data) :
pass

The data parameter is the message published to the topic. Its type and struc-
ture can be determined from its documentation. For example, data of type
NavSatFix has the following definition [32]:

std msgs /Header header
sensor msgs / NavSatStatus s t a t u s
f l o a t 6 4 l a t i t u d e
f l o a t 6 4 l ong i tude
f l o a t 6 4 a l t i t u d e
f l o a t 6 4 [9] p o s i t i o n c o v a r i a n c e
u int8 p o s i t i o n c o v a r i a n c e t y p e

A global counter is used for tracking the number of calls the callback function
has received. This counter is used to arbitrate the update rate of the global
variables containing the data. In Python this can be accomplished with:

def c a l l b a c k f n c (data) :
global cb rx
cb rx += 1
i f cb rx%10 == 0 :

print (str (data . l a t i t u d e) + ’ \n ’)

In this example, the latitude would be printed to the screen every tenth pub-
lication. This arbitration helps reduce the computational load required when
intensive tasks and high rate publications are combined, such as file operations
to save accelerometer data. This was determined to be necessary when file cor-
ruption occurred without arbitration for logging accelerometer data. In the data

14

Figure 12: Flowchart for servicing callbacks received for messages published to
topics

access library code the arbitration block contains code for copying the local data
to a global variable and setting a data ready flag for use by the transmission
subsystem.

3.3.2 Testing

This method of accessing data from the ArduPilot process using MAVROS
and rospy was implemented and tested. The ability to access accelerometer
and magnetometer data is shown in figures 13 and 14 respectively. This test
involved placing the autopilot system in three different orientations, each for
approximately the same amount of time. Since the direction of the gravitational

15

field and magnetic field does not change, this should (if the data is valid) create
a different linear combination of values for the axes and this is what is shown in
figures 13 and 14. A test was also performed to record GPS data during a walk
around Carleton University outside Mackenzie Building and Canal Building.
This GPS data is shown overlaid on a Google Earth satellite image in figure 15.

Figure 13: Plot showing accelerometer data for three clearly distinguishable
orientations

16

https://www.google.com/earth/

Figure 14: Plot showing magnetometer data for three clearly distinguishable
orientations

Figure 15: Overlay of walk GPS data (white line) on satellite image of Carleton
University outside Mackenzie Building and Canal Building

17

3.4 High-Level Control

The high-level control subsystem of the autopilot must meet the following two
objectives described in section 2: accept high-level commands (such as takeoff,
waypoint navigation, and landing) and allow for emergency landing or manual
flight control. This section will present the ability to control the flight through
high-level commands. The manual control safety subsystem will be shown in
section 3.4.3.

3.4.1 Implementation

The MAVROS node allows for ROS shell commands to be used for high-level
flight control. In presenting the available commands exposed by the MAVROS
node, the flight is considered to consist of four possible states: pre-flight, flight,
landing, or emergency. The available commands and the flight states to which
they correspond are summarized in table 2. Note that all the MAVROS shell
commands must begin with rosrun mavros. The format of the waypoint file
will be presented in section 3.4.2. An entire mission of the UAV can be con-
trolled using these commands; however, manual control is still necessary for
safety reasons. The design of the subsystem implementing the ability to assume
manual control will be shown in section 3.4.3.

Flight State Purpose of Command MAVROS Shell Command
Pre-flight Set launch point as home mavcmd sethome

Pre-flight Set UAV flight path mavwp load file.wp

Pre-flight Enable motor control mavsafety arm

Pre-flight Takeoff at current location mavcmd takeoff

Flight Change active waypoint mavwp goto i

Flight Change UAV flight path mavwp load file.wp

Flight Clear UAV flight path mavwp clear

Landing Land at home mavcmd land

Landing Land on current location mavcmd landcurr

Emergency Make emergency landing mavcmd landcurr

Emergency Hover at current position mavwp clear

Table 2: Available high-level commands using the MAVROS node [28] (shell
commands omit the necessary rosrun mavros)

All of these commands can be executed from a Python program by making
use of the subprocess library available in all installations of Python [33]. The
subprocess library is included in all currently supported Python versions [34].
An example of using the subprocess library is shown here:

subproces s . c a l l (” rosrun mavros mavcmd sethome”)

This example will execute the rosrun mavros mavcmd sethome command as if
it had been entered as a regular shell command. One important fact about the

18

use of this library is that the calls made using subprocess.call() are block-
ing. That is, the flow of the program will be blocked until the completion of
the command [33]. All of the commands in table 2 return after completing their
tasks; however, in some cases (notably loading a large waypoint file) this may
take on the order of seconds. One possible way to avoid this limitation would
be to use subprocess.Popen which runs shell commands in a new process [35].

3.4.2 Waypoint File Format

The format of the waypoint file used in the rosrun mavros mavwp load file.wp

command required research to determine, as no documentation of the new ver-
sion is available yet. The format does not appear to be handled differently in
the actual MAVROS code where it is parsed and passed to ArduPilot [36]. The
format of the old format for waypoints is given at [37]. The fields of an entry
in the waypoint file is shown in table 3. A graphic created for showing the new
format for waypoint files is included as appendix C.

Field Name Purpose of Field
Index Used to order the execution of waypoints
Current WP The waypoint to set as current will have a 1 here

Frame
Frame of reference used in specifying coordinates
or 2 for a mission command (explained at [38], but
limited by use of MAVROS)

Command
Command to be executed (available commands
compatible with MAVROS discussed below)

Parameter 1
Parameter 2
Parameter 3
Parameter 4

These parameters differ depending on the command used
and the parameters for each command are given at
[38] or [39]; however, not all commands presented are
available with MAVROS (discussed below)

Latitude Latitude for waypoint or command
Longitude Longitude for waypoint or command
Altitude Altitude for waypoint or command
Autocontinue 1 to continue to next command after this one completes

Table 3: Format of an entry in the QGC WPL 120 format file used for waypoint
specification [37], [38], [39]

The waypoint file can specify many different types of commands to be exe-
cuted during the mission. For example, a specified delay can be inserted at each
waypoint or a return to launch location can be given as a line in the waypoint
file. Ordinarily ArduPilot would support a wide range of available commands
or frames of reference to be set in the waypoints file; however, MAVROS limits
the set of available commands and frames of reference [36]. The limited set of
frames of reference are shown in table 4 and the limited set of commands are
shown in table 5. This limitation is due to the hardcoded nature of lines 21

19

through 49 in mission.py of MAVROS’s source code, and could easily be ex-
tended to support more commands or frames of reference should they be deemed
necessary for this project (a pull request (PR) may even be welcomed) [36].

Frame of Reference Code Description

FRAME GLOBAL 0
WGS84 coordinate system with altitude over
mean sea level

FRAME GLOBAL REL ALT 3
WGS84 coordinate system with altitude over
ground at home position

FRAME LOCAL ENU 4
Local coordinate frame: x is east, y is north,
and z is up

FRAME LOCAL NED 1
Local coordinate frame: x is north, y is east,
and z is down

FRAME MISSION 2 Indicates a mission command

Table 4: Valid frames of reference in waypoint files loaded with MAVROS in
the order listed in the source code [36], [38]

Command Code Description
LAND 21 Land at specified location
LOITER-TIME 19 Remain at specified location for specified time
LOITER-TURNS 18 Remain at specified location for specified rotations
RTL 20 Return to launch location
TAKEOFF 22 Takeoff from current location
WAYPOINT 16 Fly to specified location
COND-DELAY 112 Delay execution of waypoint line by specified time
COND-CHANGE-ALT 113 Change altitude at the specified speed

COND-DISTANCE 114
Waits for UAV to be within a specified distance
of waypoint

COND-YAW 115 Change yaw to specified heading

DO-JUMP 177
Change next command to execute to the specified
one (by index)

DO-CHANGE-SPEED 178 Set the speed of the UAV to the specified value
DO-SET-RELAY 181 Set a pin on the autopilot to specified binary value

DO-REPEAT-RELAY 182
Set a pin on the autopilot to toggle at the specified
rate

DO-SET-SERVO 183 Set a servo with a given PWM value

DO-REPEAT-SERVO 184
Set a servo to transition between values at the
specified rate

DO-SET-ROI 201
Set a region of interest for the UAV to continuously
face

Table 5: Valid commands in waypoint files loaded with MAVROS in the order
listed in the source code [36], [39]

20

3.4.3 Manual Control Safety Subsystem

For the purposes of safety, a manual control override system was designed. This
manual override system uses a standard hobby RF transmitter/receiver pair to
assume control over the UAV should it be deemed necessary. Possible cases
requiring manual control include, but are not limited to, loss of XBee communi-
cation, base station PC issues, GUI errors (either human or programming), and
failure of Python autopilot programs. The manual override system is shown in
figure 16.

Figure 16: System for implementing the manual control override

An RF transmitter/receiver pair operating in the 915MHz ISM band is used
for the manual control. This will not interfere with the main XBee communi-
cation channel operating at 2.45GHz. The output of the receiver radio is a set
of pulse width modulation (PWM) channels; however, the PXFmini requires
the input to be a pulse position modulated (PPM) signal [1]. The PPM signal
represents the multiple PWM channels over a single wire in a compressed for-
mat [40]. A signal converter was acquired and used for converting the PWM
channels to a PPM signal.

This system implementation was tested by using an oscilloscope attached
to the motor driver pins on an armed PXFmini while manipulating the RF
transmitter controls. Variation in the motor drive PWM signals were observed
as yaw, pitch, and throttle controls were changed. This shows that the UAV is
theoretically able to be controlled manually through the manual control override
system; however, without a manual flight test this ability is not fully confirmed.
No autonomous operation should be attempted without flight verification of the
manual control safety subsystem.

3.4.4 Remaining Work on High-Level Control

There is remaining work on the high-level control subsystem for the autopilot.
The manual control safety subsystem requires testing as mentioned in section
3.4.3. A library wrapping the command line calls to interact with the ArduPilot
process is necessary for interfacing with the communication system. Also, a gen-
erator for waypoint files remains to be written so that the waypoints transmitted
by the ground station can be combined into a waypoint file in the MAVROS
format.

21

4 Future Work

The most significant future work for this project is final integration and flight
testing. A sufficiently large frame quadcopter UAV has been acquired using
CUESEF funding that can accommodate the designed system. After the com-
pletion of the outstanding work required on the high-level control subsystem
(see discussion in section 3.4.4), all system components will be ready for a final
integration and flight testing.

During final integration, the performance of the Raspberry Pi 3 should be
profiled and a decision made whether the Raspberry Pi 0 would be able to sup-
port the computational load of the system. This would allow for a significant
reduction in total payload weight that would increase flight time. It would re-
sult in a 6.44W reduction in lift power required, using the 200W

kg power estimate

from [41]. This profiling could be accomplished by logging the output of Linux’s
top profiling program [42].

The autopilot system can accomplish missions specified in waypoint files au-
tonomously; however, currently no collision avoidance is implemented using the
data produced by the collision detection system. Using this data to modify the
path followed would decrease the risk of a collision caused by incorrect path
entry in the GUI. At the very least, stopping the UAV and alerting an operator
would considerably increase the safety of the system.

One significant section for future work would be to use the visual and in-
frared images to produce a 3D model of the affected building. This represents
the most intuitive method for providing the information gathered by the UAV
system to a non-technical user. The method for producing 3D models from
images will be discussed further in the section 4.1.

4.1 Photogrammetry

Photogrammetry is the science of extracting measurements from images [43].
Photogrammetry is a very popular technique used with UAVs for building 3D
models or digital elevation models (DEMs) [18], [44], [45], [46], [47]. An espe-
cially interesting photogrammetric processing algorithm for a set of unlabeled
images is called Structure from Motion (SfM) [45]. An example use of pho-
togrammetry from a UAV is given in [47] and one of the constructed 3D models
is shown in figure 17.

SfM has recently risen in prominence given its simple application and largely
automated workflow [48]. The SfM algorithm involves solving for the orienta-
tion and location of each image’s camera by matching features between images
[49]. The popularity of this technique has led to the development of software for
photogrammetric processing of images, both proprietary (e.g. Agisoft’s Photo-

22

http://www.agisoft.com/

Figure 17: Digital 3D model of a Mayan ruin in Copan, Honduras created with
the use of UAVs [47]

Scan and Pix4Dmodel) and open-source (e.g. OpenSfM and Bundler).

The major challenges of using SfM in this application are the dynamic na-
ture of the environment to be made into a 3D model and the speed at which
the firefighters need to see the initial 3D model. The challenge posed by the dy-
namic nature of the firefighter response environment can be addressed through
the use of a real time updating variant of the SfM algorithm (e.g. [50], [51]).
The speed for the initial model creation is determined in part by the time to
gather a set of images from the UAVs and in part by the run-time of the SfM
algorithm on those images. A set of images could by gathered quicker through
the use of multiple UAVs. Also, the run-time of the SfM algorithm is decreasing
as improvements are made in the dependent algorithms and GPU computation
becomes cheaper [52]. Increasing the computational power of the base station
would also decrease the time to produce the initial 3D model.

5 Conclusion

This report has presented the progress on the UAV control and autonomous
flight subsystem for a quadcopter UAV fire response system undertaken as a
fourth-year capstone project at Carleton University in Ottawa, Canada. The
development of the autopilot system was presented, along with examples of data
access from the autopilot and high-level control of the UAV’s flight. Potential
future work on the project was also discussed.

23

http://www.agisoft.com/
https://pix4d.com/product/pix4dmodel/
https://github.com/mapillary/OpenSfM
http://www.cs.cornell.edu/~snavely/bundler/

It is the author’s hope that a system such as described in this report will
someday become a tool for firefighters to increase their effectiveness and improve
their safety. In the current era of strong political divides, a demonstration that
robotics can exist outside class-based fears of automation targeting lower wage
jobs is necessary. The promising nuclear industry of the 1970’s did not live up
to its potential not because of technological hurdles, but rather a strong social
counter movement. The robotics industry should take actions so that such an
unwarranted fate may remain unique to the nuclear industry. Robotic systems
need only replace the hole existing prior to their realization.

24

A Data Access Library for the F.I.R.E. System
(fire data.py)

import rospy
from sensor msgs . msg import Imu , MagneticField , NavSatFix

g l o b a l v a r i a b l e s (modi f ied asynchronous ly in c a l l b a c k s)
imu data
a c c e l x = 0
a c c e l y = 0
a c c e l z = 0
a c c e l f l a g = False
a c c e l r x = 0
mag data
mag x = 0
mag y = 0
mag z = 0
mag f lag = False
mag rx = 0
gps data
g p s l a t = 0
gps long = 0
g p s a l t = 0
g p s f l a g = False
gps rx = 0

class d a t a a c c e s s (object) :
”””Class f o r F. I .R.E. system data c o l l e c t i o n from ArduPi lot ”””

def i n i t (s e l f , accel mod =25, mag mod=10, gps mod =5):
imu modulus
s e l f . accel mod = accel mod
mag modulus
s e l f . mag mod = mag mod
gps modulus
s e l f . gps mod = gps mod

s e l f . r o s i n i t (’ f i r e n o d e ’)

def r o s i n i t (s e l f , node name) :
rospy . i n i t n o d e (node name , anonymous=True)
rospy . Subsc r ibe r (

’ mavros/imu/ data ’ ,
Imu ,
s e l f . a c c e l c b

25

)
rospy . Subsc r ibe r (

’ mavros/imu/mag ’ ,
MagneticField ,
s e l f . mag cb

)
rospy . Subsc r ibe r (

’ mavros/ g l o b a l p o s i t i o n / g l o b a l ’ ,
NavSatFix ,
s e l f . gps cb

)

def a c c e l c b (s e l f , data) :
global a c c e l r x , a c c e l x , a c c e l y , a c c e l z , a c c e l f l a g
a c c e l r x += 1
i f a c c e l r x%s e l f . gps mod == 0 :

a c c e l x = data . l i n e a r a c c e l e r a t i o n . x
a c c e l y = data . l i n e a r a c c e l e r a t i o n . y
a c c e l z = data . l i n e a r a c c e l e r a t i o n . z
a c c e l f l a g = True

def mag cb (s e l f , data) :
global mag rx , mag x , mag y , mag z , mag f lag
mag rx += 1
i f mag rx%s e l f . mag mod == 0 :

mag x = data . m a g n e t i c f i e l d . x
mag y = data . m a g n e t i c f i e l d . y
mag z = data . m a g n e t i c f i e l d . z
mag f lag = True

def gps cb (s e l f , data) :
global gps rx , gps x , gps y , gps z , g p s f l a g
gps rx += 1
i f gps rx%s e l f . gps mod == 0 :

g p s l a t = data . l a t i t u d e
gps long = data . l ong i tude
g p s a l t = data . a l t i t u d e
g p s f l a g = True

26

B Example Using the Data Access Library

import time

load the data acces s l i b r a r y
import f i r e d a t a

c a l l the da ta acce s s cons t ruc to r
f i r e d a t a . d a t a a c c e s s ()

now the data i s a v a i l a b l e to acces s
t h i s shows an example o f p r i n t i n g the data to the screen
while True :

i f f i r e d a t a . a c c e l f l a g :
print (’ x a x i s : ’ + str (f i r e d a t a . a c c e l x) + ’ \n ’)
print (’ y a x i s : ’ + str (f i r e d a t a . a c c e l y) + ’ \n ’)
print (’ z a x i s : ’ + str (f i r e d a t a . a c c e l z) + ’ \n ’)
time . s l e e p (5)

27

C Graphic Showing the QGC WPL 120 Format

28

References

[1] ”PXFmini — Erle Robotics”, Erlerobotics.com, 2017. [Online]. Avail-
able: http://erlerobotics.com/blog/product/pxfmini/. [Accessed:
26- Mar- 2017].

[2] ”Home - Pixhawk Flight Controller Hardware Project”, Pixhawk.org, 2017.
[Online]. Available: https://pixhawk.org/. [Accessed: 31- Mar- 2017].

[3] ”Archived:APM 2.5 and 2.6 Overview Copter documentation”, Ardupi-
lot.org, 2017. [Online]. Available: http://ardupilot.org/copter/docs/

common-apm25-and-26-overview.html. [Accessed: 30- Mar- 2017].

[4] ”ArduPilot Release Notes”, GitHub, 2017. [Online]. Avail-
able: https://github.com/ArduPilot/ardupilot/blob/master/

ArduCopter/ReleaseNotes.txt. [Accessed: 29- Mar- 2017].

[5] T. Studies and D. Analysis, ”SURVEY OF TRADE STUDY METHODS
FOR PRACTICAL DECISION-MAKING Sample Application of Decision
Analysis Methods,” p. 2010, 2010.

[6] G. A. Hazelrigg, ”Letter to the Editor re The Pugh controlled convergence
method: model-based evaluation and implications for design theory,” Res.
Eng. Des., vol. 21, no. 3, pp. 143144, 2010.

[7] Skorkovsk, ”Kepner-Tregoe Methodology,” 2013.

[8] M. Alexander, ”Decision-Making using the Analytic Hierarchy Process
(AHP) and SAS/ IML,” United States Soc. Secur. Adm. Balt., pp. 112,
2012.

[9] F. Hartwich, ”Weighting of Agricultural Research Results: Strength and
Limitations of the Analytic Hierarchy Process (AHP),” pp. 118, 1999.

[10] ”Debian — Erle Robotics Docs”, Docs.erlerobotics.com, 2017. [Online].
Available: http://docs.erlerobotics.com/brains/os_images/debian.
[Accessed: 02- Apr- 2017].

[11] L. Madan and K. A. B. Bhushan, ”REAL-TIME OPERATING SYSTEM,”
vol. 4, no. 3, pp. 3950, 2014.

[12] M. Barabanov, ”A Linux-based Real-Time Operating System,” New Mex-
ico Institute of Mining and Technology, 1997.

[13] M. Mossige, P. Sampath, and R. G. Rao, ”Evaluation of Linux rt-preempt
for embedded industrial devices for Automation and Power Technologies-A
Case Study,” Proc. 9th Real-Time Linux Work., pp. 16, 2007.

[14] ”ArduPilot Open Source Autopilot”, Ardupilot.org, 2017. [Online]. Avail-
able: http://ardupilot.org/. [Accessed: 30- Mar- 2017].

29

http://erlerobotics.com/blog/product/pxfmini/
https://pixhawk.org/
http://ardupilot.org/copter/docs/common-apm25-and-26-overview.html
http://ardupilot.org/copter/docs/common-apm25-and-26-overview.html
https://github.com/ArduPilot/ardupilot/blob/master/ArduCopter/ReleaseNotes.txt
https://github.com/ArduPilot/ardupilot/blob/master/ArduCopter/ReleaseNotes.txt
http://docs.erlerobotics.com/brains/os_images/debian
http://ardupilot.org/

[15] ”GNU General Public License version 3 — Open Source Initiative”,
Opensource.org, 2017. [Online]. Available: https://opensource.org/

licenses/GPL-3.0. [Accessed: 02- Apr- 2017].

[16] ”Frequently Answered Questions — Open Source Initiative”, Open-
source.org, 2017. [Online]. Available: https://opensource.org/faq. [Ac-
cessed: 02- Apr- 2017].

[17] M. Coombes, O. McAree, W.-H. Chen, and P. Render, ”Development of
an autopilot system for rapid prototyping of high level control algorithms,”
Proc. 2012 UKACC Int. Conf. Control, no. September, pp. 292297, 2012.

[18] J. C. Ryan et al., ”UAV photogrammetry and structure from motion to
assess calving dynamics at Store Glacier, a large outlet draining the Green-
land ice sheet,” Cryosphere, vol. 9, no. 1, pp. 111, 2015.

[19] M. Quigley et al., ”ROS: an open-source Robot Operating System,” Icra,
vol. 3, no. Figure 1, p. 5, 2009.

[20] ”ROS.org — Powering the world’s robots”, Ros.org, 2017. [Online]. Avail-
able: http://www.ros.org/. [Accessed: 03- Apr- 2017].

[21] ”The 3-Clause BSD License — Open Source Initiative”, Opensource.org,
2017. [Online]. Available: https://opensource.org/licenses/

BSD-3-Clause. [Accessed: 03- Apr- 2017].

[22] S. Cousins, B. Gerkey, K. Conley, and W. Garage, ”Sharing software with
ROS,” IEEE Robot. Autom. Mag., vol. 17, no. 2, pp. 1214, 2010.

[23] ”Overview — Willow Garage”, Willowgarage.com, 2017. [Online]. Avail-
able: http://www.willowgarage.com/pages/pr2/overview. [Accessed:
02- Apr- 2017].

[24] P. Villavicencio, ”Clearpath Wins 2016 RBR50 Award -
Clearpath Robotics”, Clearpath Robotics, 2017. [Online].
Available: https://www.clearpathrobotics.com/2016/02/

clearpath-wins-rbr50-award-2016/. [Accessed: 02- Apr- 2017].

[25] I. Baranov, ”How to Guide: ROS 101 - Clearpath Robotics”, Clearpath
Robotics, 2017. [Online]. Available: http://www.clearpathrobotics.

com/2014/01/how-to-guide-ros-101/. [Accessed: 02- Apr- 2017].

[26] ”MAVLink Micro Air Vehicle Communication Protocol - QGround-
Control GCS”, Qgroundcontrol.org, 2017. [Online]. Available: http://

qgroundcontrol.org/mavlink/start. [Accessed: 03- Apr- 2017].

[27] J. A. Marty, ”Vulnerability Analysis of the Mavlink Protocol,” Air Force
Institute of Technology, 2014.

[28] ”mavros - ROS Wiki”, Wiki.ros.org, 2017. [Online]. Available: http://

wiki.ros.org/mavros. [Accessed: 03- Apr- 2017].

30

https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/faq
http://www.ros.org/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://www.willowgarage.com/pages/pr2/overview
https://www.clearpathrobotics.com/2016/02/clearpath-wins-rbr50-award-2016/
https://www.clearpathrobotics.com/2016/02/clearpath-wins-rbr50-award-2016/
http://www.clearpathrobotics.com/2014/01/how-to-guide-ros-101/
http://www.clearpathrobotics.com/2014/01/how-to-guide-ros-101/
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
http://wiki.ros.org/mavros
http://wiki.ros.org/mavros

[29] ”GNU Lesser General Public License version 3.0 — Open Source Initia-
tive”, Opensource.org, 2017. [Online]. Available: https://opensource.

org/licenses/LGPL-3.0. [Accessed: 04- Apr- 2017].

[30] ”The MIT License — Open Source Initiative”, Opensource.org, 2017. [On-
line]. Available: https://opensource.org/licenses/MIT. [Accessed: 04-
Apr- 2017].

[31] M. Quigley, B. Gerkey, and W. D. Smart, ”Programming Robots with
ROS”, Early ver3. OReilly Media, Inc., 2010.

[32] ”sensor msgs/NavSatFix Documentation”, Docs.ros.org, 2017. [On-
line]. Available: http://docs.ros.org/api/sensor_msgs/html/msg/

NavSatFix.html. [Accessed: 04- Apr- 2017].

[33] ”17.1. subprocess Subprocess management Python 2.7.13 documentation”,
Docs.python.org, 2017. [Online]. Available: https://docs.python.org/

2/library/subprocess.html. [Accessed: 07- Apr- 2017].

[34] ”17.5. subprocess Subprocess management Python 3.7.0a0 documenta-
tion”, Docs.python.org, 2017. [Online]. Available: https://docs.python.
org/3.7/library/subprocess.html. [Accessed: 07- Apr- 2017].

[35] ”17.5. subprocess Subprocess management Python 3.6.1 documentation
(subprocess.Popen)”, Docs.python.org, 2017. [Online]. Available: https:

//docs.python.org/3/library/subprocess.html#subprocess.Popen.
[Accessed: 07- Apr- 2017].

[36] ”mavlink/mavros”, GitHub, 2017. [Online]. Available: https://github.

com/mavlink/mavros/blob/master/mavros/src/mavros/mission.py.
[Accessed: 07- Apr- 2017].

[37] ”Waypoint Protocol - QGroundControl GCS”, Qgroundcontrol.org, 2017.
[Online]. Available: http://qgroundcontrol.org/mavlink/waypoint_

protocol. [Accessed: 07- Apr- 2017].

[38] ”MAVLINK Common Message set specifications”, Pixhawk.ethz.ch, 2017.
[Online]. Available: https://pixhawk.ethz.ch/mavlink/. [Accessed: 07-
Apr- 2017].

[39] ”MAVLink Mission Command Messages (MAV CMD) Copter documen-
tation”, Ardupilot.org, 2017. [Online]. Available: http://ardupilot.

org/copter/docs/common-mavlink-mission-command-messages-mav_

cmd.html. [Accessed: 07- Apr- 2017].

[40] ”PWM, PPM, and Serial RX explained”, Quad Me
Up, 2017. [Online]. Available: https://quadmeup.com/

pwm-ppm-and-serial-rx-explained/. [Accessed: 08- Apr- 2017].

31

https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/MIT
http://docs.ros.org/api/sensor_msgs/html/msg/NavSatFix.html
http://docs.ros.org/api/sensor_msgs/html/msg/NavSatFix.html
https://docs.python.org/2/library/subprocess.html
https://docs.python.org/2/library/subprocess.html
https://docs.python.org/3.7/library/subprocess.html
https://docs.python.org/3.7/library/subprocess.html
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://github.com/mavlink/mavros/blob/master/mavros/src/mavros/mission.py
https://github.com/mavlink/mavros/blob/master/mavros/src/mavros/mission.py
http://qgroundcontrol.org/mavlink/waypoint_protocol
http://qgroundcontrol.org/mavlink/waypoint_protocol
https://pixhawk.ethz.ch/mavlink/
http://ardupilot.org/copter/docs/common-mavlink-mission-command-messages-mav_cmd.html
http://ardupilot.org/copter/docs/common-mavlink-mission-command-messages-mav_cmd.html
http://ardupilot.org/copter/docs/common-mavlink-mission-command-messages-mav_cmd.html
https://quadmeup.com/pwm-ppm-and-serial-rx-explained/
https://quadmeup.com/pwm-ppm-and-serial-rx-explained/

[41] V. Kumar. ”Aerial Robotics.” Class Lecture, Topic: ”Design Considera-
tions.” Penn Engineering, University of Pennsylvania.

[42] ”top(1) - Linux man page”, die.net, 2017. [Online]. Available: https://

linux.die.net/man/1/top. [Accessed: 08- Apr- 2017].

[43] W. Linder, ”Digital Photogrammetry: A Practical Course”. Berlin:
Springer, 2006.

[44] G. Grenzdrffer, A. Engel, and B. Teichert, ”The photogrammetric potential
of low-cost UAVs in forestry and agriculture,” Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci., vol. 1, pp. 12071213, 2008.

[45] F. Mancini, M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, and G. Gab-
bianelli, ”Using unmanned aerial vehicles (UAV) for high-resolution recon-
struction of topography: The structure from motion approach on coastal
environments,” Remote Sens., vol. 5, no. 12, pp. 68806898, 2013.

[46] M. Sauerbier and H. Eisenbeiss, ”Uavs for the Documentation of Archaeo-
logical Excavations,” Proc. Isprs Comm. V Mid-Term Symp. Close Range
Image Meas. Tech., vol. 38, no. 5, pp. 526531, 2010.

[47] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and D. Sarazzi, ”Uav
Photogrammetry for Mapping and 3D Modeling Current Status and Future
Perspectives,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci., vol. XXXVIII-1/, no. September, pp. 2531, 2012.

[48] M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M.
Reynolds, ”Structure-from-Motion photogrammetry: A low-cost, effective
tool for geoscience applications,” Geomorphology, vol. 179, pp. 300314,
2012.

[49] S. Agarwal, Y. Furukawa, and N. Snavely, ”Building rome in a day,” Com-
mun. , pp. 105112, 2011.

[50] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, ”Structure from motion
causally integrated over time,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 4, pp. 523535, 2002.

[51] N. D. Molton, A. J. Davison, and I. D. Reid, ”Locally Planar Patch Features
for Real-Time Structure from Motion,” Bmvc, p. 90.1-90.10, 2004.

[52] C. Wu, ”Towards linear-time incremental structure from motion,” Proc. -
2013 Int. Conf. 3D Vision, 3DV 2013, pp. 127134, 2013.

32

https://linux.die.net/man/1/top
https://linux.die.net/man/1/top

	Introduction
	Full System Overview

	Project and Personal Objectives
	Autopilot System Development
	Autopilot Selection
	PXFmini
	Pixhawk
	APM2.6
	MCDA Methods
	Application of the Pugh Method

	Software
	Real Time Operating System
	ArduPilot
	ROS
	MAVLink and MAVROS
	Architecture

	Data Access
	Implementation
	Testing

	High-Level Control
	Implementation
	Waypoint File Format
	Manual Control Safety Subsystem
	Remaining Work on High-Level Control

	Future Work
	Photogrammetry

	Conclusion
	Data Access Library for the F.I.R.E. System (fire_data.py)
	Example Using the Data Access Library
	Graphic Showing the QGC WPL 120 Format

